{"id":9006,"date":"2022-03-30T15:29:06","date_gmt":"2022-03-30T18:29:06","guid":{"rendered":"https:\/\/professorpinguim.com.br\/blog\/?p=9006"},"modified":"2023-08-06T21:00:55","modified_gmt":"2023-08-07T00:00:55","slug":"explicacao-e-exercicios-sobre-resistores-e-leis-de-ohm","status":"publish","type":"post","link":"https:\/\/professorpinguim.com.br\/blog\/explicacao-e-exercicios-sobre-resistores-e-leis-de-ohm\/","title":{"rendered":"Explica\u00e7\u00e3o e Exerc\u00edcios sobre Resistores e Leis de Ohm"},"content":{"rendered":"\n

Fala, pessoal, tudo belezinha? Nesta aula, vamos revisar o conte\u00fado sobre resistores e as leis de Ohm e, em seguida, vamos resolver alguns exerc\u00edcios juntos. Acompanhe!<\/p>\n\n\n\n\n\n\n\n

Resistor el\u00e9trico e resist\u00eancia el\u00e9trica<\/h2>\n\n\n\n

O resistor \u00e9 o elemento do circuito que transforma energia el\u00e9trica em energia t\u00e9rmica. Por sua vez, a resist\u00eancia el\u00e9trica \u00e9 uma grandeza f\u00edsica associada \u00e0 dificuldade para a passagem de corrente el\u00e9trica. Ela \u00e9 medida em ohm (\u03a9).<\/p>\n\n\n\n

Tens\u00e3o el\u00e9trica<\/h2>\n\n\n\n

Tens\u00e3o el\u00e9trica ou ddp \u00e9 a grandeza escalar que mostra a rela\u00e7\u00e3o entre a energia el\u00e9trica (J) e a quantidade de carga el\u00e9trica (C). Ela \u00e9 representada pela f\u00f3rmula:<\/p>\n\n\n\n

\"\"\/<\/figure>\n\n\n\n

Primeira Lei de Ohm<\/h2>\n\n\n\n

Veja a figura:<\/p>\n\n\n\n

\"\"\/<\/figure>\n\n\n\n

A primeira lei de Ohm \u00e9 representada pela f\u00f3rmula: <\/p>\n\n\n\n

U<\/strong>AB<\/sub><\/strong> = R . i<\/strong><\/p>\n\n\n\n

Vale lembrar que isso se aplica tanto para resistores \u00f4hmicos (resist\u00eancia constante) ou n\u00e3o. Nesse caso, teremos um gr\u00e1fico representando por uma reta que passa pela origem:<\/p>\n\n\n\n

\"\"\/<\/figure>\n\n\n\n

Caso o resistor seja do tipo n\u00e3o \u00f4hmico, o gr\u00e1fico ser\u00e1 uma curva, pois a resist\u00eancia vai variar de acordo com a ddp:<\/p>\n\n\n\n

\"\"\/<\/figure>\n\n\n\n

Segunda Lei de Ohm<\/h2>\n\n\n\n

A segunda lei determina a resist\u00eancia de um peda\u00e7o de feio, que vai depender do comprimento (L) e da grossura (A) do resistor. \u00c9 representada pela seguinte f\u00f3rmula:<\/p>\n\n\n\n

\"\"\/<\/figure>\n\n\n\n

\u03c1: resistividade do material.
L: comprimento do condutor
A: \u00e1rea da se\u00e7\u00e3o transversal do condutor<\/p>\n\n\n\n

Importante: quando o fio for cil\u00edndrico, a \u00e1rea (A) ser\u00e1: A = \u03c0 . r\u00b2<\/strong><\/p>\n\n\n\n


\n\n\n\n

Exerc\u00edcios sobre resistores e leis de Ohm<\/h2>\n\n\n\n

Quest\u00e3o 1<\/h3>\n\n\n\n

(Fuvest) O aquecimento de um forno el\u00e9trico \u00e9 baseado na convers\u00e3o de energia el\u00e9trica em energia t\u00e9rmica em um resistor. A resist\u00eancia R do resistor desse forno, submetido a uma diferen\u00e7a de potencial V constante, varia com a sua temperatura T. Na figura a seguir \u00e9 mostrado o gr\u00e1fico da fun\u00e7\u00e3o R(T) = R<\/strong>0<\/sub><\/strong> – \u03b1(T – T<\/strong>0<\/sub><\/strong>), sendo R<\/strong>0<\/sub><\/strong> o valor da resist\u00eancia na temperatura T<\/strong>0<\/sub><\/strong> e \u03b1 uma constante.<\/strong><\/p>\n\n\n\n

\"\"\/<\/figure>\n\n\n\n

Ao se ligar o forno, com o resistor a 20 \u00baC,a corrente \u00e9 10 A. Ao atingir a temperatura T<\/strong>M<\/sub><\/strong>, a corrente \u00e9 5 A. <\/strong><\/p>\n\n\n\n

Determine a<\/strong><\/p>\n\n\n\n

a) constante \u03b1;<\/strong><\/p>\n\n\n\n

Para isso, teremos que usar um pouco de Matem\u00e1tica. Essa constante \u03b1 nada mais \u00e9 do que o coeficiente angular da reta. Geralmente, isso \u00e9 visto quando temos um gr\u00e1fico e a express\u00e3o y = b + ax, em que a \u00e9 a tangente da reta do gr\u00e1fico, formando um \u00e2ngulo, que vamos chamar de \u03b8.<\/p>\n\n\n\n

Portanto, \u03b1 ser\u00e1 numericamente igual \u00e0 tangente de \u03b8. Ent\u00e3o:<\/p>\n\n\n\n

\u03b1 = tg\u03b8<\/p>\n\n\n\n

\"\"\/<\/figure>\n\n\n\n

\u03b1 = 0,06 \u03a9\/\u00baC<\/p>\n\n\n\n

b) diferen\u00e7a de potencial V;<\/strong><\/p>\n\n\n\n

Vamos usar a primeira lei de ohm:<\/p>\n\n\n\n

V = R . i<\/p>\n\n\n\n

Veja que o enunciado nos deu o valor da corrente de 10 A quando temos 20 \u00baC. Pelo gr\u00e1fico, neste ponto, temos uma resist\u00eancia de 12 ohms. Ent\u00e3o:<\/p>\n\n\n\n

V = 12 . 10<\/p>\n\n\n\n

V = 120 V<\/p>\n\n\n\n

c) temperatura T<\/strong>M<\/sub><\/strong>;<\/strong><\/p>\n\n\n\n

Pelo enunciado, teremos a temperatura TM<\/sub> quando a corrente valer 5 A. Repare tamb\u00e9m que a ddp que descobrimos (V) \u00e9 constante: Ent\u00e3o:<\/p>\n\n\n\n

V = R . i<\/p>\n\n\n\n

120 = R . 5<\/p>\n\n\n\n

R = 24 \u03a9<\/p>\n\n\n\n

Agora, basta olhar o gr\u00e1fico e identificar a temperatura. Portanto, TM<\/sub> = 220 \u00baC<\/p>\n\n\n\n

d) pot\u00eancia P dissipada no resistor na temperatura \u2122<\/strong><\/p>\n\n\n\n

Nesta quest\u00e3o, podemos utilizar:<\/p>\n\n\n\n

P = R . i\u00b2<\/p>\n\n\n\n

P = 24 . 5\u00b2<\/p>\n\n\n\n

P = 600 W<\/p>\n\n\n\n


\n\n\n\n

Quest\u00e3o 2<\/h3>\n\n\n\n

(UFPR) A ind\u00fastria eletr\u00f4nica busca produzir e aperfei\u00e7oar dispositivos com propriedades el\u00e9tricas adequadas para as mais diversas aplica\u00e7\u00f5es. O gr\u00e1fico acima ilustra o comportamento el\u00e9trico de tr\u00eas dispositivos eletr\u00f4nicos quando submetidos a uma tens\u00e3o de opera\u00e7\u00e3o V entre seus terminais, de modo que por eles circula uma corrente i.<\/strong><\/p>\n\n\n\n

\"\"\/<\/figure>\n\n\n\n

Com base na figura acima, assinale a alternativa correta.<\/strong><\/p>\n\n\n\n

a) O dispositivo D1<\/sub> \u00e9 n\u00e3o \u00f4hmico na faixa de -30 a +30 V e sua resist\u00eancia vale 0,2 k\u03a9.<\/p>\n\n\n\n

b) O dispositivo D2<\/sub> \u00e9 \u00f4hmico na faixa de -20 a +20 V e sua resist\u00eancia vale 6 k\u03a9.<\/p>\n\n\n\n

c) O dispositivo D3<\/sub> \u00e9 \u00f4hmico na faixa de -10 a +10 V e sua resist\u00eancia vale 0,5 k\u03a9.<\/p>\n\n\n\n

d) O dispositivo D1<\/sub> \u00e9 \u00f4hmico na faixa de -30 a +30 V e sua resist\u00eancia vale 6 k\u03a9.<\/p>\n\n\n\n

e) O dispositivo D3<\/sub> \u00e9 n\u00e3o \u00f4hmico na faixa de -10 a +10 V e sua resist\u00eancia vale 0,5 k\u03a9<\/p>\n\n\n\n

RESOLU\u00c7\u00c3O:<\/strong><\/p>\n\n\n\n

Veja pelas alternativas que o enunciado nos pede para descobrir quais dispositivos s\u00e3o \u00f4hmicos ou n\u00e3o. Como vimos, para isso, o gr\u00e1fico deve ser um reta e passar pela origem. Nesse caso, podemos descartar a parte negativa do gr\u00e1fico.<\/p>\n\n\n\n

Veja que D1<\/sub> \u00e9 \u00f4hmico, mas n\u00e3o s\u00f3 ele. H\u00e1 uma faixa de ddp em que D3<\/sub> tamb\u00e9m \u00e9 \u00f4hmico, pois faz um reta.<\/p>\n\n\n\n

Isso posto, vamos calcular a resist\u00eancia de cada um deles. Cuidado, pois o gr\u00e1fico est\u00e1 em mA.<\/p>\n\n\n\n

Para D1<\/sub>:<\/p>\n\n\n\n

U = R1<\/sub> . i<\/p>\n\n\n\n

30 = R1<\/sub> . 5.10-3<\/sup><\/p>\n\n\n\n

R1<\/sub> = 6.103<\/sup> \u03a9 ou 6 k\u03a9<\/p>\n\n\n\n

Repare que j\u00e1 acertamos a quest\u00e3o.<\/p>\n\n\n\n

RESPOSTA: D<\/strong><\/p>\n\n\n\n


\n\n\n\n

Quest\u00e3o 3<\/h3>\n\n\n\n

(EsPCEx) Um fio de cobre possui uma resist\u00eancia R. Um outro fio de cobre, com o triplo do comprimento e a metade da \u00e1rea da se\u00e7\u00e3o transversal do fio anterior, ter\u00e1 uma resist\u00eancia igual a: <\/strong><\/p>\n\n\n\n

a) 2R\/3.<\/p>\n\n\n\n

b) 3R\/2.<\/p>\n\n\n\n

c) 2R.<\/p>\n\n\n\n

d) 3R.<\/p>\n\n\n\n

e) 6R.<\/p>\n\n\n\n

RESOLU\u00c7\u00c3O:<\/strong><\/p>\n\n\n\n

Note que os fios t\u00eam o mesmo material, ou seja, a mesma resistividade (\u03c1). Nesta quest\u00e3o, temos que comparar duas situa\u00e7\u00f5es.<\/p>\n\n\n\n

Na primeira:<\/p>\n\n\n\n

\"\"\/<\/figure>\n\n\n\n

Depois:<\/p>\n\n\n\n

\"\"\/<\/figure>\n\n\n\n

Para resolver essa bagun\u00e7a, temos que calcular separando o que \u00e9 letra do que \u00e9 n\u00famero. Ent\u00e3o:<\/p>\n\n\n\n

\"\"\/<\/figure>\n\n\n\n

Observe que basta substituir:<\/p>\n\n\n\n

R\u2019 = 6R<\/p>\n\n\n\n

RESPOSTA: E<\/strong><\/p>\n\n\n\n


\n\n\n\n

Para aprender mais: <\/p>\n\n\n\n

\n