{"id":2586,"date":"2021-03-10T09:00:00","date_gmt":"2021-03-10T12:00:00","guid":{"rendered":"https:\/\/professorpinguim.com.br\/blog\/?p=2586"},"modified":"2023-08-06T21:18:35","modified_gmt":"2023-08-07T00:18:35","slug":"exercicios-resolvidos-de-cinematica-basica-para-voce-treinar","status":"publish","type":"post","link":"https:\/\/professorpinguim.com.br\/blog\/exercicios-resolvidos-de-cinematica-basica-para-voce-treinar\/","title":{"rendered":"Exerc\u00edcios Resolvidos de Cinem\u00e1tica B\u00e1sica para voc\u00ea treinar"},"content":{"rendered":"\n
1. (G1 – IFSC) Hoje sabemos que a Terra gira ao redor do Sol (sistema helioc\u00eantrico), assim como todos os demais planetas do nosso sistema solar. Mas na Antiguidade, o homem acreditava ser o centro do Universo, tanto que considerava a Terra como centro do sistema planet\u00e1rio (sistema geoc\u00eantrico). Tal considera\u00e7\u00e3o estava baseada nas observa\u00e7\u00f5es cotidianas, pois as pessoas observavam o Sol girando em torno da Terra. <\/strong><\/p>\n\n\n\n\n\n\n\n \u00c9 CORRETO afirmar que o homem da Antiguidade concluiu que o Sol girava em torno da Terra devido ao fato que:<\/strong> <\/p>\n\n\n\n a) considerou o Sol como seu sistema de refer\u00eancia. <\/p>\n\n\n\n b) considerou a Terra como seu sistema de refer\u00eancia. <\/p>\n\n\n\n c) esqueceu de adotar um sistema de refer\u00eancia. <\/p>\n\n\n\n d) considerou a Lua como seu sistema de refer\u00eancia. <\/p>\n\n\n\n e) considerou as estrelas como seu sistema de refer\u00eancia. <\/p>\n\n\n\n Resposta<\/strong>: alternativa b) considerou a Terra como seu sistema de refer\u00eancia. <\/p>\n\n\n\n Do ponto de vista do homem da Antiguidade, era o Sol que girava em torno da Terra, e n\u00e3o o contr\u00e1rio, pois, em seu referencial, a Terra estava parada e o Sol estava em movimento.<\/p>\n\n\n\n 2. (PUC- PR) Em rela\u00e7\u00e3o a um avi\u00e3o que voa horizontalmente com velocidade constante, a trajet\u00f3ria das bombas por ele abandonadas \u00e9: <\/strong><\/p>\n\n\n\n a) uma reta inclinada; <\/p>\n\n\n\n b) uma par\u00e1bola de concavidade para baixo; <\/p>\n\n\n\n c) uma reta vertical; <\/p>\n\n\n\n d) uma par\u00e1bola de concavidade para cima; <\/p>\n\n\n\n e) um arco de circunfer\u00eancia. <\/p>\n\n\n\n Resposta<\/strong>: alternativa c) uma reta vertical.<\/p>\n\n\n\n Do ponto de vista do avi\u00e3o (referencial), a movimenta\u00e7\u00e3o da bomba \u00e9 apenas para baixo, pois ela segue a trajet\u00f3ria horizontal do avi\u00e3o juntamente com seu movimento vertical. Para uma pessoa no ch\u00e3o, no entanto, a trajet\u00f3ria das bombas \u00e9 uma par\u00e1bola voltada para baixo.<\/p>\n\n\n\n 3. (UERJ) A figura abaixo representa uma escuna atracada ao cais. <\/strong><\/p>\n\n\n\n Deixa-se cair uma bola de chumbo do alto do mastro, ponto O. Nesse caso, ela cair\u00e1 ao p\u00e9 do mastro, ponto Q. Quando a escuna estiver se afastando do cais, com velocidade constante, se a mesma bola for abandonada do mesmo ponto O, ela cair\u00e1 no seguinte ponto da figura: <\/strong><\/p>\n\n\n\n a) P<\/p>\n\n\n\n b) Q<\/p>\n\n\n\n c) R<\/p>\n\n\n\n d) S<\/p>\n\n\n\n e) T <\/p>\n\n\n\n Resposta:<\/strong> alternativa b) Q<\/p>\n\n\n\n Como a bola se movimenta junto com a escuna (ou seja, est\u00e1 parada em rela\u00e7\u00e3o \u00e0 escuna), mesmo com o barco em movimento sua trajet\u00f3ria continua sendo uma linha reta para baixo. Ent\u00e3o, ela cai exatamente no mesmo ponto.<\/p>\n\n\n\n 4. (UFMG-MG) Um estudante, observando seus colegas assentados em seus lugares e recordando seus conceitos de movimento, julga corretamente que: <\/strong><\/p>\n\n\n\n a) como n\u00e3o h\u00e1 repouso absoluto, nenhum de n\u00f3s est\u00e1 em repouso em rela\u00e7\u00e3o a nenhum referencial. <\/p>\n\n\n\n b) a velocidade de todos os estudantes que eu consigo enxergar agora assentados em seus lugares, \u00e9 nula para qualquer observador. <\/p>\n\n\n\n c) mesmo para o professor, que n\u00e3o p\u00e1ra de andar, seria poss\u00edvel achar um referencial em que ele estivesse em repouso. <\/p>\n\n\n\n d) eu estou em repouso em rela\u00e7\u00e3o aos meus colegas, mas todos n\u00f3s estamos em movimento em rela\u00e7\u00e3o \u00e0 Terra. <\/p>\n\n\n\n Resposta<\/strong>: alternativa c) mesmo para o professor, que n\u00e3o p\u00e1ra de andar, seria poss\u00edvel achar um referencial em que ele estivesse em repouso. <\/p>\n\n\n\n Para qualquer corpo (referencial) que fizesse a mesma trajet\u00f3ria com o professor, como uma caneta em seu bolso, o professor estaria em repouso.<\/p>\n\n\n\n 5. Dois corpos A e B se movem em trajet\u00f3rias retil\u00edneas, paralelas e muito pr\u00f3ximas.<\/strong><\/p>\n\n\n\n a) Qual a dist\u00e2ncia inicial entre os corpos? <\/p>\n\n\n\n Resposta: <\/strong>6m<\/p>\n\n\n\n A dist\u00e2ncia inicial entre os dois corpos vai ser no instante 0, e que a posi\u00e7\u00e3o inicial de B \u00e9 igual a 0 (SAb<\/sub> = 0) e a posi\u00e7\u00e3o inicial de A \u00e9 -6 (S0A<\/sub> = -6m). Ent\u00e3o a dist\u00e2ncia inicial \u00e9 igual a 6m (Dab<\/sub> = 6m).<\/p>\n\n\n\n b) Qual o instante de encontro?<\/p>\n\n\n\n Resposta<\/strong>: \ud835\udeabt = 4s<\/p>\n\n\n\n \u00c9 o instante em que os gr\u00e1ficos se cruzam. Como o gr\u00e1fico nos d\u00e1 a escala, podemos perceber que este instante corresponde a \ud835\udeabt = 4s.<\/p>\n\n\n\n 6. Os espa\u00e7os de um m\u00f3vel obedecem \u00e0 fun\u00e7\u00e3o hor\u00e1ria s = 150 \u2013 10.t (SI). O instante em que o m\u00f3vel passa pela origem dos espa\u00e7os \u00e9: <\/strong><\/p>\n\n\n\n a) \u2013 15 s<\/p>\n\n\n\n b) 15 s<\/p>\n\n\n\n c) 10 s<\/p>\n\n\n\n d) 5 s<\/p>\n\n\n\n e) \u2013 10 s <\/p>\n\n\n\n Resposta<\/strong>: b) 15 s<\/p>\n\n\n\n Passar pela origem dos espa\u00e7os \u00e9 passar por onde a trajet\u00f3ria (s) \u00e9 igual a 0. Ent\u00e3o basta substituir o s da equa\u00e7\u00e3o por 0.<\/p>\n\n\n\n s = 150 \u2013 10t <\/p>\n\n\n\n 0 = 150 \u2013 10t <\/p>\n\n\n\n 10t = 150<\/p>\n\n\n\n t = 15s<\/p>\n\n\n\n 7. Um m\u00f3vel se locomove sobre uma trajet\u00f3ria retil\u00ednea de acordo com o gr\u00e1fico de posi\u00e7\u00e3o versus tempo a seguir.<\/strong><\/p>\n\n\n\n Determine: <\/strong><\/p>\n\n\n\n a) a varia\u00e7\u00e3o de espa\u00e7o entre os instantes t = 0 e t = 6 s.<\/p>\n\n\n\n Resposta<\/strong>: 10m<\/p>\n\n\n\n No instante 0s, o espa\u00e7o \u00e9 -10m. No instante 6s, o espa\u00e7o \u00e9 0m. Ent\u00e3o basta calcular a diferen\u00e7a \ud835\udeabS, dada pela equa\u00e7\u00e3o \ud835\udeabS = S – S0<\/sub>. <\/p>\n\n\n\n \ud835\udeabS = S – S0<\/sub><\/p>\n\n\n\n \ud835\udeabS = 0 – (-10)<\/p>\n\n\n\n \ud835\udeabS = 10m<\/p>\n\n\n\n b) a dist\u00e2ncia efetivamente percorrida neste intervalo<\/p>\n\n\n\n Resposta<\/strong>: 30m<\/p>\n\n\n\n Perceba que o m\u00f3vel tem um movimento de ida, fica alguns instantes parado e depois tem um movimento de volta. Ent\u00e3o temos que somar o \ud835\udeabS na ida e o \ud835\udeabS na volta.<\/p>\n\n\n\n Dp<\/sub> = \ud835\udeabS(ida)<\/sub> + \ud835\udeabS(volta)<\/sub><\/p>\n\n\n\n N\u00e3o se esque\u00e7a que deve usar a dist\u00e2ncia em m\u00f3dulo, e que o \ud835\udeabS = S – S0<\/sub><\/p>\n\n\n\n Dp<\/sub> = |10 – (-10)| + |0 – 10|<\/p>\n\n\n\n Dp<\/sub> = |20| + |10|<\/p>\n\n\n\n Dp<\/sub> = 30m<\/p>\n\n\n\n c) o deslocamento escalar entre t = 0 e t = 8 s <\/p>\n\n\n\n Resposta<\/strong>: 0m<\/p>\n\n\n\n Deslocamento escalar \u00e9 \ud835\udeabS, sendo \ud835\udeabS = S – S0<\/sub>. Ent\u00e3o vamos fazer essa conta.<\/p>\n\n\n\n \ud835\udeabS = S – S0<\/sub><\/p>\n\n\n\n \ud835\udeabS = -10 – (-10)<\/p>\n\n\n\n \ud835\udeabS = -10 + 10<\/p>\n\n\n\n \ud835\udeabS = 0m<\/p>\n\n\n\n O deslocamento \u00e9 nulo pois ele voltou para o ponto de partida.<\/p>\n\n\n\n Espero que voc\u00ea tenha entendido um pouco melhor sobre cinem\u00e1tica<\/strong>. E se quiser ajuda para melhorar seu n\u00edvel de F\u00edsica em outras mat\u00e9rias, entre em contato comigo e escolha o curso de F\u00edsica mais adequado para voc\u00ea<\/a>!<\/strong><\/p>\n\n\n\n SAIBA MAIS <\/strong> Me acompanhe nas redes sociais: curta a minha p\u00e1gina no Facebook<\/strong><\/a>,<\/strong> me siga no Instagram<\/strong><\/a>,<\/strong> se inscreva no Youtube<\/strong><\/a> e participe do meu canal oficial no Telegram<\/a><\/strong>.<\/p>\n","protected":false},"excerpt":{"rendered":" Exerc\u00edcios Resolvidos de Cinem\u00e1tica 1. (G1 – IFSC) Hoje sabemos que a Terra gira ao redor do Sol (sistema helioc\u00eantrico), assim como todos os demais planetas do nosso sistema solar. Mas na Antiguidade, o homem acreditava ser o centro do Universo, tanto que considerava a Terra como centro do sistema planet\u00e1rio (sistema geoc\u00eantrico). Tal considera\u00e7\u00e3o […]<\/p>\n","protected":false},"author":1,"featured_media":2591,"comment_status":"closed","ping_status":"open","sticky":false,"template":"","format":"standard","meta":{"footnotes":""},"categories":[420],"tags":[363,522,524,523],"class_list":["post-2586","post","type-post","status-publish","format-standard","has-post-thumbnail","hentry","category-cinematica","tag-cinematica","tag-cinematica-basica","tag-cinematica-exercicios","tag-exercicios-de-cinematica-basica"],"yoast_head":"\n<\/figure><\/div>\n\n\n\n
<\/figure><\/div>\n\n\n\n
<\/figure><\/div>\n\n\n\n
\n\n\n\n<\/a><\/figure>\n\n\n\n
\u2705 Conceitos b\u00e1sicos de Cinem\u00e1tica: Repouso e movimento<\/strong><\/a>
\u2705 Quest\u00f5es de Cinem\u00e1tica resolvida em v\u00eddeo<\/strong><\/a>
\u2705 Conceitos b\u00e1sicos de Cinem\u00e1tica: Equa\u00e7\u00e3o do espa\u00e7o em fun\u00e7\u00e3o do tempo<\/strong><\/a><\/p>\n\n\n\n